
Relationships between Design Patterns
Walter Zimmer

Forschungszentrum Informatik, Bereich Programmstrukturen
Haid-und-Neu-Strasse 10-14, D-76131 Karlsruhe, Germany

email: zimmer@fzi.de

Abstract

The catalogue of design patterns from [Gamm94] con-
tains about twenty design patterns and their mutual rela-
tionships. In this paper, we organize these relationships
into different categories and revise the design patterns
and their relationships. We are then able to arrange the
design patterns in different layers. The results simplify
the understanding of the overall structure of the cata-
logue, thereby making it easier to classify other design
patterns, and to apply these design patterns to software
development.

1. Introduction

In the last couple of years, object-orientation has gained
much attention in the field of software engineering.
However, after some initial experiences with object-ori-
entation, software engineers are facing fundamental
problems when designing and reusing applications and
libraries, which cannot be solved by current methods and
tools.

A growing number of people consider design pat-
terns to be a promising approach to system development,
which addresses the aforementioned problems, especial-
ly in object-oriented systems (cf. [Beck93], [Beck94],
[Gamm93], [Gamm94], [Coad93a], [Copl91], [Copl94],
[Shaw91], [John92], [Busc93], [Pree94]). The main idea
behind design patterns is to support the reuse of design
information, thus allowing developers to communicate
more effectively. New design patterns are being discov-
ered, described and applied by several research groups.
Development tools supporting the design pattern ap-
proach are also under work.

In this new field of software engineering, the fol-
lowing important questions are arising:

• Amongst the many different design patterns
that are being discovered, are any related to
each other? What are the characteristics of
such a relationship?

• Do two patterns address a similar problem
area?

• Is it possible to combine two design patterns?

• What are the criteria for classifying design
patterns into categories?

Very few publications [Gamm93] [Gamm94]1 have
adequately addressed these issues. Similar to the pattern
descriptions in architecture [Alex77], each pattern descrip-
tion in [Gamm94] contains a “See Also” section with pos-
sible relationships between design patterns. Furthermore,
the catalogue presents a classification of all design patterns
according to two criteria: jurisdiction (class, object, com-
pound) and characterization (creational, structural, behav-
ioural).

The relationships in [Gamm94] are described infor-
mally and in detail, so that each relationship appears to be
a little bit different from the other ones. We propose a clas-
sification of the relationships which helps in understanding
the similarities among the relationships. This motivates us
to modify the catalogue slightly, and to organize the design
patterns into several layers.

This paper gives new insights into the relationships
between existing design patterns. Our major accomplish-
ments are as follows:

• a classification of the relationships between
design patterns;

• a new design pattern resulting from a general-
ization of several other design patterns;

• and a structuring of design patterns into
several layers.

In the next chapter, we present a graphic view of all
design patterns and their relationships as they appear in the
aforementioned catalogue [Gamm94]. Section 3 classifies
these relationships. This process raises some problems and
gives further insights into the relationships between design
patterns in general. After modifying the catalogue structure
in Section 4, we show in Section 5 how it is possible to ar-

1. In this paper we will refer to the preliminary version of this
catalogue dated from 9/93. We suppose that the reader has at
least some knowledge about the design patterns of this cata-
logue. [Gamm93] is a good introductory paper for design pat-
terns and this catalogue. In [Gamm94], the authors have
updated their terminology: Cookie→ Memento, Exemplar→
Prototype, Manager→ Mediator, Mimic→ State, Walker→
Visitor, Wrapper→ Decorator. Descriptions of almost all de-
sign patterns ofthe forthcoming catalogue can be found on
st.cs.uiuc.eduunder /pub/patterns/dpcat.

Relationships between Design Patterns 2

range the design patterns into layers representing differ-
ent abstraction levels.

2. Overall structure of the
design pattern catalogue

Figure 1 is a graphic presentation of the design patterns
and their relationships that were in [Gamm94]. No fur-
ther information is added to this figure. The annotations
to the arrows are taken almost literally from this cata-
logue. The variables X and Y are placeholders for the
source and target of the respective arrows.

Figure 1 gives an impression of the overall structure
of the catalogue. It serves as a reference point for the rest
of this paper, because it contains the most detailed infor-
mation about the relationships. Figure 1 serves therefore
as the starting point for the further classification and re-
vision of the relationships.

3. Classification of
relationships

3.1 Issues to be addressed

On the basis of Figure 1, we tried to find categories contain-
ing similar kinds of design pattern relationships. During
this process, the following issues had to be addressed.

Relationships refer to different aspects of
design patterns

Figure 1 shows relationships addressing issues ranging
from the problem definition (“creating objects”, “decou-
pling of objects”) and the solution definition (“Command
can use the Composite pattern in its solution”) to very spe-
cific implementation details (“similar in a level of indirec-
tion”).

We wanted to improve the comprehensibility of the
catalogue and its structure. Therefore, we focused on the

X is a
degenerated
Y (without
object
aggregation)

X can be
organized
in a Y

Abstract Factory

Factory Method

Solitaire

Observer

Template Method

Builder

Flyweight Composite

Interpreter

Iterator

Strategy

Memento

Command

Decorator

Proxy Adapter

Chain of Resp.

State

BridgeGlue

Mediator

Prototype

Visitor

X uses Y for
its manager
object

Competing
patterns

X is
implemented
using Y

Similar in giving
indirect access to
objects

X is called within
Template Methods

X can use Y to
implement the change
manager

Similar in
passing state
to objects

X is a
specialized
 Y object

Recursive
structure of
X defines
simple
instance of Y

X is often
applied to Y

X can be
combined
 with Y

X can be
used to
maintain
behavior
of each
node

X uses Y
to traverse
structure

X uses Y to
implement
Macro-
Commands

X is
managed
by using Y

X is used to
capture state
of iteration

X can be
considered a
compound and
incremental Y

Both use a level
of indirection

Both use a level
of indirection to
achieve
flexibility

Similar in decoupling
collaborations between
objects

Both mimic
other objects,
but Proxy
does not
change
protocol

Both enhance
other objects,
but Decorator
does not change
protocol

X often
builds a
Y object

X can use
Y to share
leaf nodes

X is typically
applied to Y

It is common
to have X in
a Y

X can keep
state of
Command
Target

X adapts
implementation
 rather than a
protocol

Similar in
constructing
object structures

Similar, but
Decorators
are
recursively
composable

Figure 1 The starting point: The overall structure of the design pattern catalogue

Relationships between Design Patterns 3

problem and solution aspects. The relationships address-
ing implementation details played a minor role in this pa-
per. For this reason, they were removed in later figures
(Figure 3 and Figure 4).

Directions of relationships

The descriptions of the relationships in the catalogue do
not contain the direction of the relationships, which may
be unidirectional — backwards or forwards — or bidi-
rectional. Once the category that the relationship belongs
to, is known, the direction can be determined rather
quickly. But if one is not sure about the category, then the
direction often remains unclear.

Strength of relationship

Is the given relationship quite strong (like between Ab-
stract Factory and Factory Method) or are the design pat-
terns more loosely coupled (like Observer and Solitaire)?
Some design patterns can stand almost alone, others
make sense only in combination with certain other de-
sign patterns. The assessment of this property is often
subjective because it is based on experience in using and
combining different design patterns.

3.2 Categories of relationships

We have classified relationships between the pairs (X,Y)
of design patterns into the following categories:

X uses Y in its solution

When building a solution for the problem addressed by
X, one subproblem is similar to the problem addressed
by Y. Therefore, the design pattern X uses the design pat-
tern Y in its solution. Thus, the solution of Y (e.g. class
structures) represents one part of the solution of X.

X is similar to Y

They address a similar kind of problem (not a similar
kind of solution). In several cases, these similarities are
also expressed in the classification given in the cata-
logue, e.g. the catalogue classifies both Prototype and
Abstract Factory in the category “Object - Creational”.

X can be combined with Y

A typical combination of design patterns is the combina-
tion of X and Y (e.g. Iterators traverse Composite struc-
tures). In contrast to “X uses Y”, X does not use Y in its
solution (or vice versa).

3.3 Classification

Figure 2 shows how we have classified the relationships
depicted in Figure 1 into these categories. Instead of jus-
tifying the classifications of all relationships, we focus

on the most interesting ones. Interesting means here, that
we find it difficult to assign a particular relationship into
exactly one of the categories, that we are not sure about the
meaning of the relationship at all, or we think that some
further explanation is useful.

X uses Y in its solution

In most cases, the assignment of relationships to this cate-
gory is clear. Perhaps it would make sense to split these re-
lationships further into “X must use Y” and “X might use
Y”, because this information indicates the strength of the
relationship.

X is similar to Y

Abstract Factory, Prototype and Builder are similar in that
they all deal with object creation. Builder and Visitor are
strategies. Both Glue and Mediator serve to decouple ob-
jects. In contrast to Proxy and Decorator which allow the
client to attach additional properties dynamically to an ob-
ject, Adapter primarily serves to provide a completely dif-
ferent interface to an object.

State (Strategy) is rather loosely coupled with Bridge and
Strategy (Flyweight) as this relationship addresses the im-
plementation detail “level of indirection” (“passing of state
to objects”).

X can be combined with Y

A Builder often produces Composite objects. A Factory
Method is typically called in a Template Method.

Composite, Visitor, Iterator: Iterator traverses
composite structures and Visitor centralizes operations on
object structures. Depending upon the necessary degree of
flexibility, one typically combines two or all three design
patterns (for instance Interpreter).

Composite, Decorator: Composite and Decorator are
often used together in applications, for example for visual
objects in ET++, MacApp and Interviews [Wein88],
[App89], [Lint89]. There are also other kinds of relation-
ships between them: when looking at the solution aspect,
Decorator can be seen as a degenerated Composite; when
considering the problem aspect, they both support recur-
sively structured objects, whereby Decorator focuses on
attaching additional properties to objects. Thus, the design
patterns are somehow similar, but it difficult to state it more
precisely. Therefore, we only insert a relationship of type
“combined”, and neglect the other ones.

3.4 Using the classification

This section gives several possibilities for using the pre-
sented classification when working with design patterns.

Relationships between Design Patterns 4

Abstract Factory

Factory Method

Solitaire

Observer

Template Method

Builder

Flyweight Composite

Interpreter

Iterator

Strategy

Memento

Command

Decorator

Proxy Adapter

Chain of Resp.

State

BridgeGlue

Mediator

Prototype

Visitor

Figure 2 Classification of Relationships

X uses Y in its solution

X is similar to Y

X can be combined with YY

Y

YX

X

X

X uses Y in its solution

This relationship makes clear, that Y can be used as a part
of the solution of X. The description of X can refer back
to that of Y, in order to be shorter and easier to under-
stand. Tools supporting the design pattern approach can
profit from this information; the relationship can be
checked in existing designs; design patterns like Y can
be visualized as blocks without internal implementation
details in order to raise the abstraction level.

X is similar to Y

Design patterns related in this way address similar prob-
lems. When searching for a design pattern which solves
a certain kind of problem, first of all you can look at a
family of similar design patterns addressing this kind of
problems; secondly, you use the one which meets your
requirements best. Thus, this relationship supports the
retrieval of design patterns.

X can be combined with Y

When one has already applied a design pattern in a sys-
tem, relationships of this kind can help in finding other
design patterns which are useful to combine with the ex-
isting one. Thereby, the retrieval of design patterns is
supported.

Several design patterns related by this relationship
may also be used as larger building blocks in design, thus
raising the abstraction level.

4. Modifying relationships and
design patterns

This section examines the proposed classification of the re-
lationships further. This process results in a new design pat-
tern and some modifications to existing relationships.

4.1 A new design pattern
Objectifier

Figure 2 shows that Strategy is similar to the design pat-
terns Builder and Visitor which can be regarded as special
kinds of strategies objectifying some behaviour. Iterator
and Command are also design patterns which objectify cer-
tain behaviours; the catalogue writes: “a Command objec-
tifies command dependent behaviour” or “an Iterator
allows to vary the traversal of object structures”.

We consider the objectification of behaviour, by
means of additional classes, to be the central common fac-
tor of these and other design patterns. The usage of this de-
sign pattern allows to vary this objectified behaviour.

Therefore, we think that the objectification of behav-
iour is a basic design pattern; we call itObjectifier. A de-
tailed description of Objectifier is given in the appendix. It
uses the same description format as [Gamm93]. The Imple-
mentation and Sample Code parts are left out.

Relationships between Design Patterns 5

4.2 Other modifications

The organization of the relationships in different catego-
ries is sometimes difficult, because it partly depends
upon subjective criteria. The difference between “X may
use Y” or “X can be combined with Y” depends upon a
subjective assessment, whether the usage of Y is seen as
a central part of the solution of X, or if it is more a com-
bination of two autonomous design patterns.

Furthermore, two design patterns might be related
in different ways; Decorator / Composite and Abstract
Factory / Prototype are pairs of design patterns, which
can be combined, and are also similar. In our paper, each
relationship is assigned to the most adequate category.

Factory Method

 Figure 2 shows that Factory Method does notuse Tem-
plate Method, but it is oftencalled in a Template Method,
i.e. Factory Method often plays the role of a primitive in
a Template Method. Thus, if an Abstract Factory uses
Factory Method in its solution, then it really uses the de-
sign pattern Template Method. Therefore, we do not con-
sider Factory Method as a real design pattern, but as a “X
use Y” relationship between Abstract Factory and Tem-
plate Method. Figure 3 draws an “X use Y” arrow be-
tween these design patterns and annotates it with Factory
Method.

Adapter — Decorator, Proxy

Among other things the catalogue says “Decorator is dif-
ferent from an Adapter, because a Decorator only chang-
es an object‘s properties and not its interface; an Adapter
will give an object a completely new interface.” We think
that this is a main difference, and that Adapter is quite
different from both Decorator and Proxy. This relation-
ship is therefore removed.

Flyweight — Abstract Factory

As the manager part of Flyweight is no intrinsic part of
the design pattern, we remove this relationship.

Objectifier — Flyweight, State

The relationships from Strategy to other design patterns
are transformed in corresponding relationships to Objec-
tifier. As we neglect relationships addressing implemen-
tation details, we remove these relationships from
Objectifier to Flyweight and State. But as explained in
the previous section about Objectifier, State uses Objec-
tifier in its own solution. Therefore, a new relationship
between State and Objectifier is added.

Adapter — Bridge

Bridge may use Adapter in its own solution. An example
for this is the data structure set: Adapters can be used to

view lists, array and tables as sets. Thus Adapters standard-
ize the interfaces of the different ConcreteImplementor
classes (lists, array and tables) to the common Implementor
interface in the Bridge pattern.

Objectifier — Template Method

As explained in description of Objectifier (see Appendix),
both patterns serve the similar purpose of varying behav-
iour.

The integration of all these modifications, as well as
the addition of the Objectifier pattern, into Figure 2 results
in Figure 3.

5. Layers of design patterns

5.1 Arrangement in several layers

Up to now, we have classified the relationships between the
design patterns and modified some of them. As one can see
in Figure 3, “X uses Y” is the most frequent relationship.

We therefore try to arrange the patters according to
this predominant relationship. The graph defined by the “X
uses Y” relationship is acyclic. This property allows us to
arrange the design patterns straightforwardly in different
layers as shown in Figure 4.

Thus we identify three semantically different layers:

• Basic design patterns and techniques.

• Design patterns for typical software problems.

• Design patterns specific to an application
domain.

5.2 Basic design patterns and
techniques

This layer contains the design patterns, which are heavily
used in the design patterns of higher layers and in object-
oriented systems in general. The two design patterns Ob-
jectifier and Composite seem to be the most important ones
as they are used by eight, respectively three other design
patterns.

The problems addressed by these design patterns oc-
cur again and again when developing object-oriented sys-
tems. The design patterns are thus very general. When
building a system, one would often look upon them more
as basic design techniques than as patterns.The intentions
of these design patterns (see Table 1) are very general and
applicable to a broad range of problems occurring in the de-
sign of object-oriented systems.

Relationships between Design Patterns 6

Abstract Factory

Solitaire

Observer

Template Method

Builder

Flyweight Composite

Interpreter

Iterator

Objectifier
Memento

Command

Decorator

Adapter

Chain of Resp.

State

Bridge

Glue

Mediator

Prototype

Visitor

Figure 3 Revised Classification

Factory Method

Proxy

Strategy

We regard the problem addressed by Composite
(and Decorator, Proxy) as a bit more specific than the
problems addressed by the other patters of this layer.
Therefore, we thought about moving Composite into the
next higher layer. But Composite is a basic design pat-

Design
pattern

Purpose of the design pattern

Adapter Adapting a protocol of one class to the
protocol of another class.

Composite Single and multiple, recursively com-
posed objects can be accessed by the
same protocol.

Decorator Attaching additional properties to objects.

Glue Encapsulating a subsystem.

Mediator Managing collaboration between objects.

Memento Encapsulating a snapshot of the internal
state of an object.

Objectifier Objectifying behaviour.

Proxy Controlling access to an object.

Solitaire Providing unique access to services or
variables.

Template
Method

Objectifying behaviour (primitives will
be varied in subclasses).

Table 1 Basic design patterns with
their respective purposes

tern, in the sense that, the addressed problem of handling
recursively structured objects is a basic problem in many
contexts. The many relationships to Composite in Figure 4
express this quite well. We therefore leave Composite in
the basic layer.

5.3 Design patterns for typical
software problems

The middle layer comprises design patterns which are used
for more specific problems in the design of software. These
design patterns are not used in design patterns from the ba-
sic layer, but in patterns from the application specific layer,
and possibly from the same layer. The problems addressed
by these design patterns are not typical of a certain applica-
tion domain.

Builder, Prototype and Abstract Factory address prob-
lems with the creation of objects; Iterator traverses object
structures; Command objectifies an operation; and so on.

5.4 Design patterns specific to
application domain

Design patterns in this layer are the most specific and they
can often be assigned to one or more application domains.

Although the general problem of parsing some input
often occurs, we consider Interpreter to be more specific.
Interpreter is used to parse simple languages. The cata-
logue lists some of the known uses of Interpreter, e.g. pars-
ing constraints and matching regular expressions.
Compiler construction is the major application domain.

The current catalogue contains almost no application
specific design patterns. Most patterns are generic and ap-

Relationships between Design Patterns 7

Abstract Factory

Solitaire

Observer

Template Method

Builder

Flyweight

Composite

Interpreter

Iterator

Objectifier Memento

Command

Decorator Adapter

Chain of Resp.

State

Bridge

Glue

Prototype Visitor

Figure 4 Arrangement of design pattern in layers

Design patterns specific to an application domain

Design patterns for typical software problems

Basic design patterns & techniques

ProxyMediator

Strategy

Factory
Method

plicable to a broad range of problems. The authors sup-
port this property by the existence of a “Known Uses”
section in the design pattern description, which should
include at least two examples from different application
domains.

5.5 Other arrangements

The presented arrangement of design patterns into layers
is only one possible separation of design patterns. We see
it as a starting point for further work. As more design pat-
terns are described, the separation in layers should be
discussed and adapted to new requirements. At the mo-
ment, it helps us to grasp and to understand the overall
structure of the catalogue, and to relate new design pat-
terns to existing ones. It is also an aid for traversing /
learning design patterns, as the user can choose between
a bottom-up or a top-down traversal.

Another possible arrangement is to group design
patterns according to their typical combinations of de-
sign patterns. Up to now, only some such combinations
are known (see Figure 4). We think, that in the future
they will play a more important role, because typical
combinations can be used as building blocks in design.

The criteria jurisdiction and characterization,
which are given in [Gamm94], result in several clusters
of design patterns with a similar intent; this arrangement
can help during the retrieval of an adequate design pat-
tern for a specific problem.

6. Related Work

The notion of design patterns is introduced by [Alex77] in
the area of architecture. Each design pattern description
contains a section where relationships to other patterns, of
the same, of a higher or of a lower granularity level are pre-
sented. These relationships influence the construction proc-
ess, because one should always look at related patterns
when one builds something; and because one should al-
ways apply patterns of higher levels first. A classification
for the patterns, but not for their mutual relationships, is
given.

[Gamm93] [Gamm94] present a large collection of
well described design patterns. The relationships between
design patterns are also described, but not classified, al-
though a classification of design patterns is included. Their
clustering according to jurisdiction (class, object, com-
pound) and characterization (creational, structural, behav-
ioural) is orthogonal to the one derived in this paper.
Patterns in a certain cluster can be considered as similar to
one another, thereby supporting the selection of an appro-
priate design pattern for a certain problem.

Frameworks [WB90] [John91] can be considered as
high-level design patterns, usually consisting of many in-
terrelated design patterns of lower levels. In [Beck94] the
authors write “Patterns can be used at many levels, and
what is derived at one level can be considered a basic pat-
tern at another level.” Furthermore, they state “This is
probably typical of most architectures; some patterns will
be generic and some will be specific to the application do-
main”, which confirms the organization depicted in Figure

Relationships between Design Patterns 8

4. [Booc93] also mentions that design patterns are rang-
ing from idioms to frameworks.

In [Coad93b], several design patterns are combined
in an exemplary application, but the relationships are not
investigated any further.

7. Conclusion

We have presented a classification of the relationships
between design patterns, which led to a new design pat-
tern and to an arrangement of the design patterns into dif-
ferent layers. These results partially stem from one of our
former projects [Zimm94]. Although the design pattern
approach and the excellent catalogue [Gamm94] have
proven effective in this project, the following issues
showed up:

• The design of important abstractions of the
application domain often requires the
combination of several, interrelated design
patterns.

• Applying design patterns requires a fair
knowledge of both single design patterns
and their relationships.

• Tool support is needed to apply design
patterns to really large applications.

Our results address these issues because they help in:

• understanding the often complex relation-
ships between design patterns;

• organizing existing design patterns, as well
as categorizing and describing new design
patterns;

• comparing different collections of design
patterns;

• and in building CASE tools which support
design patterns.

Thus, the results are a step towards the develop-
ment of a pattern language. We think that this will be
very valuable for the development of object-oriented
systems.

We are continuing our work with design patterns by
formalizing the semantics of the different kinds of
relationships and the different layers shown in Figure 4.
We are aiming at greater precision and a better semantic
definition. This is a prerequisite for defining a generally
accepted and usable classification scheme, which will
serve as a basis for further work.

Many design patterns are being discovered and de-
scribed outside of those in [Gamm94], especially appli-
cation specific design patterns. We will organize them
and their relations in the given classification scheme.

This will enable us to evaluate the validity and usefulness
of the classification scheme and improve it accordingly.

8. References

[Alex77] C. Alexander, S. Ishikawa, and M. Silverstein.A Pat-
tern Language. Oxford University Press, 1977.

[App89] Apple Computer, Cupertino, California.Inc. Macintosh
Programmers Workshop Pascal 3.0 Reference, 1989.

[Beck93] K. Beck. Patterns and software development.Dr. Do-
bbs Journal, 19(2):18–23, 1993.

[Beck94] K. Beck and R. Johnson. Patterns generate architecture.
In Proceedings of ECOOP’94, 1994. To appear.

[Booc93] G. Booch. Patterns.Object Magazine, 3(2), 1993.

[Busc93] F. Buschmann. Rational architectures for object-orien-
ted software systems.Journal of Object-Oriented Pro-
gramming, 6(5):30–41, September 1993.

[Casa92] Eduardo Casais, Michael Ranft, Bernhard Schiefer,
Dietmar Theobald, and Walter Zimmer. Obst - an overview.
Technical report, Forschungszentrum Informatik (FZI), Karls-
ruhe, Germany, June 1992. FZI.039.1.

[Coad93a] P. Coad. Object-oriented patterns.Communications of
the ACM, 35(9):153–159, September 1993.

[Coad93b] P. Coad. Patterns (workshop). InOOPSLA’92 Adden-
dum to the Proceedings, volume 4 ofOOPS Messenger, pages
93–96, Vancouver, B.C., Canada, October 1993. OOPS Mes-
senger, ACM Press.

[Copl91] J. Coplien.Advanced C++: Programming Styles and
Idioms. Addison-Wesley, 1991.

[Copl94] J.O. Coplien. Generative pattern languages: An emer-
ging direction of software design. Technical report, 1994.

[Gamm93] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Abstraction and reuse in object-oriented de-
signs. In O. Nierstrasz, editor,Proceedings of ECOOP’93, pa-
ges 406–431, Berlin, 1993. Springer-Verlag.

[Gamm94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Pattern. Addison-Wesley, To Appear, 1994.

[John91] Ralph E. Johnson and Vincent F. Russo. Reusing ob-
ject-oriented designs. Technical Report Technical Report
UIUCDCS 91–1696, University of Illinois, May, 1991.

[John92] R. Johnson. Documenting frameworks using patterns.
In Proceedings of OOPSLA’92, volume 27 ofACM SIGPLAN
Notices, pages 63–76, Vancouver, B.C., Canada, October 1992.
ACM Press.

[Lint89] M. Linton, John Vlissides, and P. Calder. Composing
user interfaces with interviews.IEEE Computer, 22(2):8–22,
February 1989.

[Pree94] W. Pree. Meta-patterns: A means for describing the es-
sentials of reusable o-o design. InProceedings of ECOOP’94,
1994. To Appear.

[Rumb91] J. Rumbaugh, M. Blaha, W. Premerlani, F.Eddy, and

Relationships between Design Patterns 9

W.Lorensen.Object-Oriented Modeling And Design. Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1991.

[Shaw91] M. Shaw. Heterogenous design idioms for software
architecture. InProceeding of the Sixth International Work-
shop on Software Specification and Design, Software Engi-
neering Notes, pages 158–165, Como, Italy, October 25-26
1991. IEEE Computer Society.

[WB90] Rebecca J. Wirfs-Brock and Ralph E. Johnson. Sur-
veying current research in object-oriented design.CACM,
33(9):105–123, September 1990.

[Wein88] André Weinand, Erich Gamma, and Rudolph Marty.
ET++ – an object-oriented application framework in C++. In
Proceedings OOPSLA ’88, ACM SIGPLAN Notices, pages
46–57, November 1988. Published as Proceedings OOPSLA
’88, ACM SIGPLAN Notices, volume 23, number 11.

[Zimm94] Walter Zimmer. Experiences using design patterns
to reorganize an object-oriented application, July 1994. Po-
sition paper for the Pattern Workshop at ECOOP’94.

A Description of Objectifier

Name

Objectifier

Intent

Objectify similar behaviour in additional classes, so
that clients can vary such behaviour independently from
other behaviour, thus supporting variation-oriented de-
sign (see [Gamm93]). Instances from those classes rep-
resent behaviour or properties, but not concrete objects
from the real world.

Motivation

Objectifier is a very general design pattern to be applied
in a wide range of problems. The idea of objectifying be-
haviour is used in a lot of other design patterns. In the fol-
lowing, the usage of Objectifier is shown with an
example, which represents a somewhat simpler variant
of the design pattern Bridge.

A frequent problem in design is the separation of an
abstraction from its implementation, and the interchange
of implementations. For example, a data type Mapping
might provide different implementations for different
tasks due to reasons of efficiency.

A common approach is to have an abstract class for
the data type Mapping with concrete subclasses Map-
pingList and MappingHash representing different imple-
mentations. This allows to interchange the
implementation at compile-time, butnot at run-time.

A more flexible approach is to objectify the varying
behaviour, i.e. to have independent implementation ob-
jects which can be interchanged at run-time. In the exam-

ple of Mapping1, you have a class Mapping representing
the abstraction, and an abstract class MappingImpl, which
is the superclass for the concrete implementation classes
MappingList, MappingHash. Mapping maintains a refer-
ence to MappingImpl, and it delegates the requests to its
current implementation object.

This solution allows to interchange the implementa-
tion object at run-time.

Applicability

Use the Objectifier pattern when

• Behaviour should be decoupled from classes
in order to have independent behaviour
objects which can be interchanged, saved,
modified, shared or invoked.

• Run-time configuration of behaviour is
required.

• There are several almost identical classes
which differ only in one or a few methods.
Objectifying the different behaviour in
additional classes allows to unify the former
classes in one common class, which can then
be configured with a reference to the new,
additional classes.

• There is a large amount of conditional code to
select behaviour.

Participants

Client

• has a reference to the Objectifier.

• can be configured with a concrete Objectifier
at run-time.

Objectifier

1. The OMT Notation [Rumb91] is used in this dia-
gram. Italic letters indicate abstract classes and meth-
ods. The method insert from Mapping is represented in
pseudo-code. The attribute impl of Mapping is a refer-
ence to MappingImpl.

Mapping
impl

insert(Object)
remove(Object)

MappingImpl

insert(Object)
remove(Object)

MappingHash

insert(Object)
remove(Object)

MappingList

insert(Object)
remove(Object)

impl->insert (Object);

Relationships between Design Patterns 10

• defines the common interface for the
different concrete Objectifiers. It may also
contain data or references to other objects
which are common to all concrete Objec-
tifiers.

Collaborations

• A client may use Objectifier to delegate
parts of its behaviour. The Objectifier
receives the information needed to fulfil its
task during its initialization, or the client
passes the information as a parameter when
calling the Objectifier.

• A client can be configured with a concrete
Objectifier to adapt the behaviour to a
current situation.

Class Diagram

Consequences

• Encapsulation, Modularity: Behaviour is
objectified and encapsulated in classes.

• Configurability, Customizability: Clients of
Objectifier can change the concrete Objec-
tifier at run-time.

• Extensibility, Single Point of Evolution:
New behaviour can be implemented by
adding a new class without affecting
existing classes.

• Efficiency

— Loss of time and space by an additional
level of indirection.

— The client can dynamically select the
class which is most efficient according to
the current situation.

— Stateless Objectifiers (without attributes)
can be shared by different objects.

Known Uses

The example of the data type Mapping (see Motivation
section) is taken from the data structure library of OBST,
an object-oriented database system [Casa92]. The type
of the current implementation object of a Mapping object
depends upon the current size; if the number of objects
managed by the Mapping object exceeds eight (or falls
below four), then the list implementation is replaced with

Client
ref Objectifier

OperationA()
OperationB()

ConcreteObjectifierA

OperationA()
OperationB()

ConcreteObjectifierB

OperationA()
OperationB()

a hash implementation (or vice versa). This replacement is
triggered by the Mapping object itself, not by the user.

Objectifier is also used in the solution of other design pat-
terns. Therefore, one can find real examples of Objectifier
by looking at the design patterns referenced in the “See Al-
so” section.

See Also

Although several design patterns contain the common idea
of objectifying behaviour to solve a problem, their purpos-
es and requirements are more specific than those of Objec-
tifier. Therefore, Objectifier is rather a generalization of
these patterns than a totally new design pattern. It removes
redundancies in the descriptions of other design patterns

As a lot of other issues have to be addressed when
applying these related design patterns, we regard them as
independent design patterns, not only as specialized
variants of Objectifier. Table 2 contains related design
patterns with the corresponding behaviour to be objectified
(and potentially varied).

Strategy: Objectifier differs from Strategy in objecti-
fying behaviour in a broader sense and is not restricted to
algorithms in the classic sense of “algorithms and data
structures”. Thus, Objectifier is more general than Strategy.

Template Method: It has a similar intent as Objectifi-
er: the variation of some behaviour. A Template Method
represents the principal structure of an algorithm or behav-
iour, whereby parts of it can be varied in subclasses by
(re)defining methods (primitives). In contrast to this, Ob-
jectifier puts only the variable parts in additional classes, so
that these parts can be varied independently from other be-
haviour. One superclass defines the common interface, and
several subclasses implement the concrete behaviour in
different ways.

Design
pattern

Objectified behaviour

Bridge Implementation of some abstraction

Builder Creation / Representation of objects

Command Command dependent behaviour

Iterator Traversal of object structures

Observer Context dependent behaviour

State State dependent behaviour

Strategy (Complex) Algorithm

Visitor Type dependent behaviour (types of
single objects in Compound structure)

Table 2 Design patterns with their objec-
tified behaviour

